Trigger and Readout System for Straw Tubes Detectors

Grzegorz Korczył (grzegorz.korczył@gmail.com)
International PhD Studies in Applied Nuclear Physics and Innovative Technologies UJ, Kraków
Plan

1. Full readout setup
2. Simplified readout setup
3. Triggering HPTDC
4. Data structure
5. TRBv3
6. HLD files
7. Unpacker
8. Unpacker structure
9. Running the unpacker
Full Readout Setup

- Expandable up to 16 data sources
- GbE (50MBps) uplink to Event Build

TRBv2
- 4 HPTDC x 32 channels
- 2Gbps optical link

Triggering controlled by CTS Addon
- Triggered from external source
- Multiple trigger inputs gating
- Self trigger at specified rate

Rates in idle state (1x TRB, 1xTDC):
- Trigger: 135kHz
- Uplink: 25MBps
Simplified Readout Setup

- 4 HPTDC x 32 channels
- FE (8MBps) uplink to Event Builder

- Needs external trigger source

- Rates
 - Trigger: 160kHz (theoretical)
 - Uplink: 8MBps
Triggering HPTDC

- External trigger input on TRBv2
- Signal connected to each TDC on 32nd channel and treated as reference time
- TDC triggered with a configurable delay (0xc0 [31;24])
- File configurable parameters

- Asynchronous trigger

- „Triggerless”
Data Structure

- **“Full” setup**
 - Collects and encapsulates data on several levels
 - Addressing needed
 - Deeper unpacking needed
 - Larger overhead:
 - Minimal empty event:
 - 40B Queue headers
 - 16B Subevent headers
 - 12B HUB headers
 - 8B + 4 (8B + n*8B) TDC headers + data (single)
 - 8B + 4 (8B + n*4B) TDC headers + data (pairing mode)
 - = 108B
 - Addition from CTS ~20B

- **“Simplified” setup**
 - Data comes from only one source
 - Smaller overhead:
 - Minimal empty event:
 - 8B Endpoint headers
 - 8B + 4 (8B + n*8B) TDC headers + data (single edge)
 - 8B + 4 (8B + n*4B) TDC headers + data (pairing mode)
 - = 48B
TRBv3

Key features:
- 4x Lattice ECP3 70
- 1x Lattice ECP3 150
- 4x SFP
 - 2x GbE duplex links
 - 2x TrbNet links
- 4x 156 pin connectors with power supp
 - Input lines for TDC-in-FPGA
 - Connectors to small Addon Boards
- 1x regular Addon connector

TDC in FPGA
- ~ 6ps time resolution
- 17ps in Hi-Res mode by HPTDC

- Configurable number of TDC channels
- Extendable number of data transmitters
HLD File

- Binary file with saved events
- Subevents structure
- Tools:
 - Daq_anal – decodes data to ASCII
 - HYDRA – heavyweight framework for full unpacking
 - Unpackers – lightweight ROOT library unpacker

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund.
Unpacker

- Independent C++ software
 - Few source files and MakeFile needed to compile
- Designed as ROOT library to be loaded at startup
- Creates ROOT structures from HLD files

Current limitations (but not hard to solve!):
- Decodes only TDC data from TRBv2 subevents
- Can decode data from one endpoint at a time
Unpacker Structure

- **Unpacker**
 - Prepares ROOT tree
 - Iterates through all events in the file
 - Creates and executes HLDEvents
 - Fills the tree with decoded events

- **HLDEvent**
 - Contains
 - Information about event
 - List of Hits
 - Filters out event from specified endpoint
 - Decodes TDS data
 - Creates Hit objects

- **Hit**
 - Contains:
 - TDC number
 - Channel
 - Leading time
 - Trailing time / Width (mode dependent)
Running the Unpacker

- **Compilation:**
 - Simply make
 - No other dependencies
 - Creates `libunpacker.so`

- **Load library to ROOT:**
 - Start ROOT from a directory with `rootlogon.c` file
 - `gSystem->Load("path/to/unpacker/libunpacker.so");`

- **Call the Unpacker:**
 - Create an instance of Unpacker
 - `Unpacker(const char* hld, Int_t nEvt, Int_t subEvtId, Int_t refChannel)`
Running the unpacker

[Image of a ROOT Object Browser window showing the contents of a ROOT file]

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund.
Running the Unpacker
Running the unpacker

```
<table>
<thead>
<tr>
<th>event.Hits.channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>125</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>htemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
<tr>
<td>128363</td>
</tr>
<tr>
<td>110.8</td>
</tr>
<tr>
<td>11.85</td>
</tr>
</tbody>
</table>