\(\Sigma N \) Cusp Effect and Angular Distributions in the CMS Frame in the \(pp \rightarrow pK^+\Lambda \) Reaction

Sedigheh Jowzaee(1), (2)

for the COSY-TOF collaboration

Physics of the Reaction

- An elementary reaction to examine the \(\Lambda \) hyperon and its production mechanism.
- Understanding the dynamics of the associated strangeness production in the reaction.
- Analysis of the \(pp \rightarrow pK^+\Lambda \) reaction to determine properties of
 - \(p\Sigma \) cusp effect
 - \(N^* \)-resonances
 - \(\Sigma N \) interaction
- Exploring the mechanism of the \(pp \rightarrow pK^+\Lambda \) reaction with different differential observables
 - Dalitz plot
 - Spin independent observables
 - Angular distribution
 - \(p\Lambda \) invariant mass
 - Spin dependent observables
 - \(\Lambda \) polarization
 - Kaon and \(\Lambda \) analyzing power

Dalitz Plot Analysis

- The COSY-TOF experiment covers the full phase-space
- The Dalitz plot distribution of the \(pp \rightarrow pK^+\Lambda \) has strong deviations from homogenous phase space
- Enhancements seen on the left and center
- Interference effects
 - \(p\Lambda \) final-state interaction
 - \(N^* \)-resonances
 - \(p\Sigma \) cusp

Cusp Effect

- Selection \(\cos\theta_{K^+} < 0 \) or \(> 0 \) divides the Dalitz plot into two equal phase space volume halves
- Studying of different physical effects in the \(p\Lambda \) channel without crossed channels effects
- \(p\Sigma \) cusp shape may change due to resonances interference
- \(p\Sigma \) cusp angular distribution is symmetric with dominant S-wave part

Angular Distributions

- All the distributions are corrected for detector acceptance and reconstruction efficiency
- Angular distribution of particles in center of mass frame
- The angular distributions in the overall CMS are expected to be symmetric around \(\cos\theta = 0 \) due to the identical particles in the entrance channel
- Some asymmetries are seen in the forward and backward regions
 - Background mixed with data
 - Incomplete Monte Carlo description of the detector at small angles
- Angular distributions described by Legendre polynomials

\[
\frac{d\sigma}{d\Omega} = \sum_{l=0}^{\infty} \left(2l+1\right)a_{l}\cos^{l}\theta =
C_{0} + C_{2}\cos^{2}\theta + C_{4}\cos^{4}\theta \ldots
\]

Current Status

- High statistics measurement of \(pK^+\Lambda \) events with the COSY-TOF spectrometer
 - \(p_{\text{beam}} = 2.95 \text{ GeV/c} \)
 - Polarized proton beam \(P = \left(87.5 \pm 2.0 \right)\% \)
 - 132000 reconstructed \(pK^+\Lambda \) events
- Reconstruction of \(pp \rightarrow pK^+\Lambda \rightarrow pK^+\pi^0 \) events with the straw-tube-tracker provides
 - Precise reconstruction of secondary vertex
 - Reduced background
 - High resolution
- Current COSY-TOF results show
 - 28% reconstruction efficiency
 - 139 \(\mu \)m spatial resolution
 - Invariant mass resolution 1.4 MeV/c²
 - Delayed vertex identification above 2.5 cm from primary vertex

Contact: s.jowzaee@fz-juelich.de

(1) Jagiellonian University, Poland
(2) Forschungszentrum Jülich, Germany