Search for $^4\text{He}-\eta$ bound state: status of the 2010 experiment

Magdalena Skurzok
Wasa Meeting, Jurata, 05-09.04.2011
1. Introduction
2. Experimental method
3. Status of the experiment in 2010
4. Summary
η-mesic bound state

Atomic nucleus

η-mesic nucleus

\[m = Z \cdot m_p + N \cdot m_n - B_s \]

\[B_s = \Delta mc^2 \]

\[m_{bs} = m_{4He} + m_\eta - B_s \]
Conditions for the existence of eta-mesic nuclei

\[\Re a_{\eta-nucleus} < 0 \]
\[|\Re a_{\eta-nucleus}| > |\Im a_{\eta-nucleus}| \]

Attractive interaction between \(\eta \) and \(N \)

possible existence of \(\eta \)-mesic bound state for \(A>12 \)

Recent theoretical investigations of hadronic- and photoproduction of η meson

$0.27 \, fm \leq \text{Re} \, a_{\eta N} \leq 1.05 \, fm$

$0.19 \, fm \leq \text{Im} \, a_{\eta N} \leq 0.39 \, fm$

$\Gamma \in (7,40) MeV$

$B_s \in (5,15) MeV$

$\left(^4\text{He}-\eta \right)_{bs}$

$\left(^3\text{He}-\eta \right)_{bs}$

$\left(\text{T-}\eta \right)_{bs}$

$\left(\text{d-}\eta \right)_{bs}$
Production of $^4\text{He}\,\eta$ bound state in dd reaction

- Possible reaction channels

\[dd \rightarrow \left(^4\text{He} - \eta \right)_{bs} \rightarrow ^3\text{He} \ p \ \pi^- \]
\[dd \rightarrow \left(^4\text{He} - \eta \right)_{bs} \rightarrow ^3\text{He} \ n \ \pi^0 \rightarrow ^3\text{He} \ n \ \gamma \ \gamma \]
\[dd \rightarrow \left(^4\text{He} - \eta \right)_{bs} \rightarrow d \ p \ p \ \pi^- \]
\[dd \rightarrow \left(^4\text{He} - \eta \right)_{bs} \rightarrow T \ p \ \pi^0 \rightarrow T \ p \ \gamma \ \gamma \]
Kinematical mechanism of the reaction

Scheme of reaction process, in which \(\eta \)-mesic nucleus is formed

\[\text{dd} \rightarrow (^{4}\text{He} - \eta)_{bs} \rightarrow ^{3}\text{He} \ p \ \pi^- \]
Search for eta-mesic nuclei with WASA-at-COSY facility
Search for eta-mesic nuclei with WASA-at-COSY facility

- Expected results of the measurements

Angle between p i π⁻ in the CM frame

\[\theta_{CMN^*} = 180^0 \]

Resonant structure below η meson production threshold

\[dd \rightarrow \left(^4\text{He} - \eta \right)_{bs} \rightarrow ^3\text{He} \ p \ \pi^- \]
Reaction: \[dd \rightarrow \left(^4He - \eta \right)_{bs} \rightarrow ^3He \ p \ \pi^- \]

Time of measurement: \(T = 16.5h \)
Luminosity: \(L \approx 3 \cdot 10^{30} \text{ cm}^{-2}\text{s}^{-1} \)
Acceptance: \(A = 53\% \)

Upper limit of the total cross section: \(\sigma \approx 20\text{nb} \)

Wojtek Krzemień
Reactions:

\[dd \rightarrow \left(^{4}\text{He} - \eta \right)_{bs} \rightarrow ^{3}\text{He} \ p \ \pi^- \]

\[dd \rightarrow \left(^{4}\text{He} - \eta \right)_{bs} \rightarrow ^{3}\text{He} \ n \ \pi^0 \rightarrow ^{3}\text{He} \ n \ \gamma \ \gamma \]

\[Q \in (-70,30)\text{MeV} \rightarrow p_d \in (2.127,2.422)\text{GeV} / c \]

\[p_d^{\text{thr}} = 2.336\text{GeV} / c \]

Main trigger: fHedwr1 - at least one charged particle in FD, track matching between FWC, FTH and FRH, high thr. for FWC

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>TIME [h]</th>
<th>(L \left[\frac{1}{\text{cm}^2\text{s}} \right])</th>
</tr>
</thead>
<tbody>
<tr>
<td>with magnetic field</td>
<td>43</td>
<td>(5.68 \cdot 10^{30})</td>
</tr>
<tr>
<td>without magnetic field</td>
<td>111.5</td>
<td>(9.11 \cdot 10^{30})</td>
</tr>
<tr>
<td>all measurement</td>
<td>154.5</td>
<td>(8.15 \cdot 10^{30})</td>
</tr>
</tbody>
</table>

40x higher statistics than 2 years ago

Luminosity calculated based on Tr. 17 (elastic scattering)

220kHz => \(L=4 \cdot 10^{30} \text{ cm}^{-2}\text{s}^{-1} \)
3He identification in FD

3He selection bases on $\Delta E-\Delta E$ ($\Delta E-E$) method
^3He identification in FD

Wrong calibration for 23 layer of FRH2
3He identification in FD
^3He identification in FD

$dd \rightarrow ^3\text{He} \ n$ - for normalization
3He identification in FD
Summary

- During the experiment in 2010 two channels were measured with average luminosity $L \approx 8.15 \cdot 10^{30} \text{ cm}^{-2} \text{s}^{-1}$

 40 times higher statistics

- Main task: determination of the excitation functions

- If no peak observed => determination of the upper limit of the total cross section with accuracy of few nb.
Thank you for attention 😊