Vector Spherical Harmonics for Active magnetic shielding

Grzegorz Wyszyński

Uniwersytet Jagielloński
Eidgenössische Technische Hochschule Zürich

January 5th, 2012
The aim of this project is to design, construct and test system for active magnetic field compensation.

This system consists of parts:
- Magnetic field readout and (inter-)extrapolation
- Magnetic field generation

The best beginning for design is to find a basis functions, in which the magnetic field will be described.
Vector Spherical Harmonics

- **Vector Spherical Harmonics** - Complete basis of vector functions in spherical coordinates
- Simplifies calculations with ∇ and ∇^2 operators

\[
\begin{align*}
\vec{\Psi}_{lm}(\theta, \phi) & \equiv r \nabla \vec{Y}_{lm}(\theta, \phi) \\
\vec{Y}_{lm}(\theta, \phi) & \equiv \hat{r} \vec{Y}_{lm}(\theta, \phi) \\
\vec{\Phi}_{lm}(\theta, \phi) & \equiv \hat{r} \times \vec{\Psi}_{lm}(\theta, \phi)
\end{align*}
\]
Definition of a problem

\[\vec{J} = 0 \implies \nabla \times \vec{B} = 0, \]

\[\vec{B} = -\nabla \varphi_M, \]

\[\varphi_M = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \phi_{lm}(r) Y_{lm}(\theta, \phi). \]

Outside our 'test' volume \(\vec{j} \neq 0 \):

\[\nabla \times \vec{B} = \nabla \times \left(\nabla \times \vec{A} \right) = \frac{4\pi}{c} \vec{j}. \]
Application of VSH to our problem

- Let's apply currents:

\[\vec{j} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} J_{lm}^{(2)} \Phi_{lm} \]

- They give us the following magnetic field:

\[\vec{B} = -\nabla \varphi_M = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (l+1)r^{l-1} \left(-l \vec{Y}_{lm} - \vec{\Psi}_{lm} \right) \alpha_{lm}, \]

\[\varphi_M = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \varphi_{lm}(r) Y_{lm}(\theta, \phi) \]

\[\varphi_{lm}(r) = (l+1)r^l \alpha_{lm}, \]

\[\alpha_{lm} = \frac{4\pi}{(2l+1)c} \int_0^{\infty} (r')^{-l+1} J_{lm}^{(2)}(r')dr' \]
1st order coils

\[
\Phi_{10}, \quad \mathbb{R}(\Phi_{11}), \quad \mathbb{I}(\Phi_{11})
\]
Relative difference between desired and achieved field

\[
\text{Relative difference} = \left| \frac{\vec{B}_{\text{vsh}} - \vec{B}_{\text{generated}}}{|\vec{B}_{\text{generated}}|} \right|
\]

10 wires

Relative difference, \(x=0.100000 \)

100 wires

Relative difference, \(x=0.100000 \)
Relative difference in function of number of wires

Grzegorz Wyszyński (UJ and ETH)
Active Magnetic Shielding
January 5th, 2012
Truncated icosahedron

Properties

- 90 edges of 1 length - a
- 30 joints of one type
- Diameter is between $2.478a$ (radius of circumscribed sphere) and $2.2673a$ (distance from center of mass to the hexagonal walls)
- 32 walls - 20 hexagonal and 12 pentagonal
Football coils - 1st order

Φ_{10} $\Re(\Phi_{11})$ $\Im(\Phi_{11})$
Football coils - relative difference, $l = 1$, $m = 0$, 10 wires

Relative difference in function of r
Football coils - relative difference, $l = 1, m = 0, \text{100 wires}$
Work status

What has been done?
- The basis has been chosen for describing magnetic field
- The windings of coils have been found
- Verification is completed
- Configuration with football-like structure is being designed

Plans for future
- Next couple of months - build small ($R < 1\text{m}$) test setup (football structure?)
- Since July - build bigger prototype
Spherical coils - B_x, $l = 1$, $m = 0$
Spherical coils - B_y, $l = 1$, $m = 0$
Spherical coils - B_z, $l = 1, m = 0$
Football coils - $B_x, I = 1, m = 0$
Football coils - B_y, $l = 1, m = 0$
Football coils - B_z, $l = 1$, $m = 0$
Football coils - relative difference, $l = 1, m = 0$