Entangled state of two neutral kaons in KLOE-2 experiment

Tomasz Twaróg

Jagiellonian University

27.01.2011
KLOE experiment

A system of two neutral kaons

CPT

KLOE-2
Entangled state of two neutral kaons in KLOE-2 experiment
Entangled state of two neutral kaons in KLOE-2 experiment
e^+ − e^- collisions with \(E_{CM} = 1020 \text{ MeV} \) - \(\phi \) meson resonance centre

- main \(\phi \) decay modes:

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>BR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^+ K^-)</td>
<td>49.1</td>
</tr>
<tr>
<td>(K^0 \bar{K}^0)</td>
<td>33.8</td>
</tr>
<tr>
<td>(\rho \pi + \pi^+ \pi^- \pi^0)</td>
<td>15.6</td>
</tr>
<tr>
<td>(\eta \gamma)</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Neutral kaons can be described in different bases depending on the features one wants to describe:

- the basis of strangeness eigenstates: K^0, \bar{K}^0;
- the basis of Hamiltonian eigenstates: K_S, K_L - well defined lifetimes:

$$|K_S\rangle = \frac{1}{\sqrt{2 \left(1 + |\epsilon_S|^2\right)}} \left[(1 + \epsilon_S) |K^0\rangle + (1 - \epsilon_S) |\bar{K}^0\rangle \right] ,$$

$$|K_L\rangle = \frac{1}{\sqrt{2 \left(1 + |\epsilon_L|^2\right)}} \left[(1 + \epsilon_L) |K^0\rangle - (1 - \epsilon_L) |\bar{K}^0\rangle \right] ;$$

- (historically) the basis of CP operator eigenstates: K_1, K_2
As P and C eigenvalues are conserved in strong processes, the initial state of two neutral kaons coming from ϕ meson decay has to be:

$$|i\rangle = \frac{1}{\sqrt{2}} \left\{ |K^0 (-\vec{p})\rangle |\bar{K}^0 (+\vec{p})\rangle - |\bar{K}^0 (-\vec{p})\rangle |K^0 (+\vec{p})\rangle \right\} = \frac{N}{\sqrt{2}} \left\{ |K_S (+\vec{p})\rangle |K_L (-\vec{p})\rangle - |K_L (+\vec{p})\rangle |K_S (-\vec{p})\rangle \right\}$$

$z\ N \approx 1.$

- possibility of testing EPR-like phenomena
Double decay rate for decays to the same final states:

\[I(f_1, f_2; \Delta t) = \frac{C_{12} |\eta|^2}{\Gamma_S + \Gamma_L} \left\{ e^{-\Gamma_L \Delta t} + e^{-\Gamma_S \Delta t} - 2e^{-\frac{\Gamma_S + \Gamma_L}{2} \Delta t} \cos(\Delta m \Delta t) \right\} \]
CPT theorem assumptions:

- Lorentz invariance
- unitarity
- locality
Possibility of CPT nonconservation connected with unitarity criterion:

- black holes can emit particles (Hawking)
- possibility of evolution of pure states into mixed states close to black holes (part of the system falls behind the event horizon)
- description of the state in the future - sum over all possible black hole states
- such evolution from pure to mixed state is incompatible with CPT invariance (Wald)
- similar transitions may also be possible on a microscopic (elementary particle) level
Schematic view of KLOE-2 upgrades in the vicinity of the interaction point:
Thank you for your attention