Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow ^3He n$ reaction

Magdalena Skurzok

Jagiellonian University, Kraków, Poland

NARA Women’s University, 29.10.2014

INTERNATIONAL PHD PROJECT IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science-MPD program co-financed by the European Union within the European Regional Development Fund
Luminosity determination

Spectator model - $dd \rightarrow ppn_{sp}n_{sp}$ reaction

$dd \rightarrow ^{3}\text{He}n$

$L = \frac{N}{\sigma \epsilon}$

N-number of experimental events

σ-cross section for $dd \rightarrow ^{3}\text{He}n$ reaction

$\epsilon = \frac{A_{acc}}{A_{gen}}$-detection efficiency

Magdalena Skurzok
Simulation of $dd \rightarrow ^3He + n$ reaction

1. p_{beam} is generated with uniform probability density distribution in the range of $p_{beam} \in (2.127, 2.422) \text{GeV/c}$.

2. The neutron and ^3He momentum vectors are simulated isotropically in the CM frame in spherical coordinates ($\cos \theta^*$ is generated with uniform probability density distribution in the range of -1 to 1 while ϕ^* in the range of $-\pi$ to π) and transformed into Cartesian coordinates.

3. Four-momenta of ^3He and neutron are calculated in the CM system.

4. The differential cross section $\frac{d\sigma(t-t_{\text{max}})}{dt} = \sum_{i=1}^{3} a_i e^{b_i(t-t_{\text{max}})}$ is calculated for each event for appropriate p_{beam} and $\Delta t = (t - t_{\text{max}}) = 2 \cdot |\vec{p}_{beam}| \cdot |\vec{p}_{^3\text{He}}^*| \cdot (\cos \theta^* - 1)$ values.

5. Each event is saved with probability given by the cross section.

6. WASA Monte Carlo (simulation of the detection system response by geant) is carried out for generated events.
• $\sigma_{dd \rightarrow ^3He n}$ is a function of transferred momentum squared $t = (P_{^3He} - P_{beam})^2$ and beam energy E_{beam}

• t-spectra measured in experiment fitted with the sum of exponentials: $\frac{\sigma(t-t_{max})}{dt} = \sum_{i=1}^{3} a_i e^{b_i(t-t_{max})}$

• energy dependance of fit parameters was fitted with hyperbolical functions: $par_i(\sqrt{s_{dd}}) = \frac{p_i}{\sqrt{s_{dd}} - q_i} + r_i$

<table>
<thead>
<tr>
<th></th>
<th>p_i</th>
<th>q_i</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>11.64</td>
<td>4.05</td>
<td>-14.49</td>
</tr>
<tr>
<td>b_1</td>
<td>0.78</td>
<td>3.92</td>
<td>9.04</td>
</tr>
<tr>
<td>a_2</td>
<td>2327.04</td>
<td>-1.44</td>
<td>-399.27</td>
</tr>
<tr>
<td>b_2</td>
<td>0.78</td>
<td>3.92</td>
<td>9.04</td>
</tr>
<tr>
<td>a_3</td>
<td>0.22</td>
<td>4.08</td>
<td>1.24</td>
</tr>
<tr>
<td>b_3</td>
<td>0.78</td>
<td>3.92</td>
<td>9.04</td>
</tr>
</tbody>
</table>
Differential cross section $dd \rightarrow ^3He n$
Differential cross section $dd \rightarrow ^3\text{He} n$

$\frac{d\sigma}{dt} [\mu b/(GeV/c)^2]$

- $p_{\text{beam}} = 2.127$ GeV/c
- $p_{\text{beam}} = 2.334$ GeV/c
- $p_{\text{beam}} = 2.422$ GeV/c

$\sigma_{\text{tot}} [\mu b]$ vs $\sqrt{s_{dd}} [GeV]$
Luminosity determination

Spectator model - $dd \rightarrow ppp_{sp}n_{sp}$ reaction

$dd \rightarrow ^3He n$

FD

Forward Detector

COSY beam

Pellet Target

SCS

MDC

FPC

FWC

FTH

PSB

FRH

Absorber

Central Detector

FRH

$E_{kin, ^3He} [\text{GeV}]$

$\theta_{^3He} [\text{deg}]$

FRH4

FRH3

FRH2

FRH1

$\theta_n [\text{deg}]$

neutron in CD

3He in FD
Analysis - conditions and cuts

Analysis was carried out for DATA and WMC after preselection. Conditions applied in analysis are following:

a) trigger 7 (at least 1 charged track in FD, track matching between FWC, FTH, FRH, high threshold for FWC),

b) no el_22 of FRH2 and el_1 of FRH3 ((those elements didn’t work properly during measurement, amplification was fluctuating, therefore we were not able to improve calibration for them),

c) one charged track in Forward Detector, $\theta_{3He} \in (3, 18)^{\circ}$, 0 or 1 neutral clusters in CD, no charged clusters in CD.
Luminosity determination

Spectator model - \(dd \rightarrow ppn_{sp}n_{sp} \) reaction

\(^3He \) identification in FD - DATA

![Graph showing data analysis for the WASA-at-COSY experiment](image)
3He identification in FD - WMC

Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow pp_{sp}n_{sp}$ reaction
Additional cut: $m_x(E_x) \, dd \rightarrow ^3\text{He}n$
Background rejection - DATA

The missing mass m_x spectrum for $\cos \theta^* \in (0.96,0.98)$ and $Q \in (0,5)$ MeV
Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow ppn_{sp}n_{sp}$ reaction

Luminosity calculation

1. The number of events for DATA after all cuts (background rejection) is saved to 2 dimensional histogram $\cos \theta^*$ vs. excess energy Q (5 bins of $\cos \theta^*$ and 5 bins of Q).

2. Detection efficiency for WMC is calculated as the number of accepted events to the number of all generated events ($\epsilon = N_{acc}/N_{gen}$) and saved in 2 dimensional histogram.

3. The total cross section for each of $(\cos \theta^*, Q)_{i,j}$ bin was determined as:

$$\sigma_{toti,j} = \frac{d\sigma_{i,j}}{d(\cos \theta^*)} \cdot \Delta(\cos \theta^*),$$

where:

$$\frac{d\sigma_{i,j}}{d(\cos \theta^*)}$$

- differential cross section calculated for $\cos \theta^*$ and Q values in the center of (i,j)-th bin:

Magdalena Skurzok
Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow ppn_{sp}n_{sp}$ reaction
Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow ppn_{sp}n_{sp}$ reaction

Luminosity calculation

1. The number of events for DATA after all cuts (background rejection) is saved to 2 dimensional histogram $cos\theta^*$ vs. excess energy Q (5 bins of $cos\theta^*$ and 5 bins of Q).

2. Detection efficiency for WMC is calculated as the number of accepted events to the number of all generated events ($\epsilon = N_{acc}/N_{gen}$) and saved in 2 dimensional histogram.

3. The total cross section for each of $(cos\theta^*,Q)_{i,j}$ bin was determined as:
 \[\sigma_{tot_{i,j}} = \frac{d\sigma_{i,j}}{d(cos\theta^*)} \cdot \Delta(cos\theta^*), \]
 where:
 \[\frac{d\sigma_{i,j}}{d(cos\theta^*)} \] - differential cross section calculated for $cos\theta^*$ and Q values in the center of (i,j)-th bin:
Luminosity determination
Spectator model - $dd \rightarrow ppn_{sp}n_{sp}$ reaction

$\in(Q, \cos \theta_{cm})$

$\cos \theta_{cm}$
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
0.89
0.88

$Q [\text{GeV}]$
-70
-60
-50
-40
-30
-20
-10
0
10
20
30

0.7
0.65
0.6
0.55
0.5
Luminosity determination

Spectator model - $dd \rightarrow ppn_{sp}n_{sp}$ reaction

Luminosity calculation

1. The number of events for DATA after all cuts (background rejection) is saved to 2 dimensional histogram $\cos\theta^*$ vs. excess energy Q (5 bins of $\cos\theta^*$ and 5 bins of Q).

2. Detection efficiency for WMC is calculated as the number of accepted events to the number of all generated events ($\epsilon = N_{acc}/N_{gen}$) and saved in 2 dimensional histogram.

3. $\sigma_{tot,i,j} = \frac{d\sigma_{i,j}}{d(\cos\theta^*)} \cdot \Delta(\cos\theta^*)$, where:
 - $\frac{d\sigma_{i,j}}{d(\cos\theta^*)}$ - differential cross section calculated for $\cos\theta^*$ and Q values in the center of (i,j)-th bin
Luminosity determination for the WASA-at-COSY experiment - analysis of the \(dd \rightarrow ppn_{sp}n_{sp} \) reaction.

The diagram shows the distribution of differential cross-section \(d\sigma/d\cos\theta_{cm}(Q,\cos\theta_{cm}) \) as a function of \(\cos\theta_{cm} \) and \(Q \) in GeV.
Luminosity is calculated for each bin as:

\[L_{i,j} = \frac{N_{i,j}}{\epsilon_{i,j} \cdot \sigma_{tot_{i,j}}} \]

where:

- \(N_{i,j} \) - number of events in \((i,j)\)-th bin,
- \(\epsilon_{i,j} \) - detection efficiency in \((i,j)\)-th bin,
- \(\sigma_{tot_{i,j}} \) - total cross section for each of \((cos\theta^*,Q)_{i,j}\) bin (multiplied by 1000 in order to get \(L \) in \(nb^{-1} \)).

Luminosity for each \(cos\theta^* \) bin was calculated as a sum of luminosities for 5 \(Q \) bins:

\[L_j = \sum_{i=1}^{5} L_{i,j} \]

The average integrated luminosity was calculated as a weighted average of the luminosities determined for individual \(cos\theta_{cm} \) intervals:

\[L_{av} = \frac{\sum_{j=1}^{5} L_j \frac{1}{(\Delta L_j)^2}}{\sum_{j=1}^{5} \frac{1}{(\Delta L_j)^2}}, \quad \Delta L_{av} = \left(\sum_{j=1}^{5} \frac{1}{(\Delta L_j)^2} \right)^{-1/2} \]
Luminosity determination
Spectator model - $dd \rightarrow pp n_{sp} n_{sp}$ reaction

Magdalena Skurzok

Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow 3^1 He n n$ reaction
Luminosity determination for the WASA-at-COSY experiment - analysis of the $dd \rightarrow ppn_{sp}n_{sp}$ reaction

$\mathcal{L}(\cos \theta_{cm})$

$L_{av} = (1102 \pm 2) \text{ nb}^{-1}$