Charm Quarks as a probe of matter produced in relativistic nucleus-nucleus collisions

Yasir Ali
For NA61/SHINE Collaboration

International Conference on New Frontiers in Physics
28 August 2013 to 5 September 2013
Kolymbari, Crete, Greece
Contents

→ Introduction
→ Physics motivation
→ Why Charm quark?
→ NA61/SHINE detector overview
→ $D^0 \rightarrow K^+ \pi^-$ feasibility study (results)
→ Summary
Introduction

• Direct measurement of hadrons containing charm quark carries important information about the initial stage of the nucleus-nucleus collision at relativistic energies.

• A feasibility study of $D^0 \rightarrow K^- \pi^+$ (BR=3.9%) channel in central Pb+Pb collisions at the CERN SPS energies will be presented. The study is done for 158 AGeV and 40 AGeV.

• The NA61/SHINE requires upgrade with a new vertex detector that will allow precise track and vertex reconstruction at the target proximity.
Why Charm?

→ An ideal probe for studying QGP

→ Charm quarks created at early stage of Heavy Ion Collision

How to measure Charm?

Reconstruction via hadronic decay channels

\[D^0 \rightarrow K^- + \pi^+ \] (3.91%) \(c\tau = 123 \ \mu m \)

\[D^{*+} \rightarrow D^0 + \pi^+ \] (61.9%)

Semi-leptonic decay channels

\[D^0 \rightarrow e + X \] (6.9%)

\[D^+ \rightarrow e + X \] (17.2%)
Physics motivation

→ So far no direct open charm measurements at SPS energies

→ But there are experimental initiatives which measure charmonia states at SPS energies (Town Meeting "Relativistic Heavy-Ion Collisions" Fleuret and Usai)

→ Simultaneous measurements of charmonia and open charm
 1. are needed to construct charm observables that are model independent.
 2. will allow to disentangle between initial and final state effects

(Int. J. Mod. Phys. E17 1367)
Physics motivation cnt.

→ Measurement of J/ψ at top SPS energy (NA50, NA60) was performed
→ Anomalous suppression of J/ψ for central A+A collisions ($N_{\text{part}} > 200$).
→ Attributed to QGP formation but other scenarios cannot be ruled out.
→ if anomalous behavior of charm production is present in the open charm channel we will be able to characterize this effect versus centrality and energy.
Other Ideas: sequential dissociation

If similar anomalous feature is visible in open charm we will be able to characterize it in a wide range of SPS energies:

\[\varepsilon = \varepsilon(N_{part} = 200, \sqrt{s_{NN}} = 17.2 \text{ GeV}) \]

Same energy density as that at top SPS and \(N_{part} \sim 200 \) can be obtained at 30 AGeV but at most central collisions.

It was shown that measurement are feasible at 40 AGeV \(\rightarrow \) energy scan

\[\text{Anomalous behavior of bulk hadronic observables} \]
Comparison of hidden and open charm R_{AA} at high and low p_T

At high $p_T R_{AA}$ for J/ψ and D mesons are consistent
→ no final (medium) state effects
(initial state effects are the same)

At low $p_T R_{AA}(J/\psi)$ shows significant suppression increasing with centrality whereas $R_{AA}(D)$ is consistent with unity

→ studying both hidden and open charm allows separation of final and initial state effects!!!
Direct open charm measurements → conclusion

- The NA50 and NA38 experiments have studied muon pair production in p-A and nucleus-nucleus collisions at the CERN SPS.
- The p+A results are described in terms of Drell-Yan process and semileptonic decays of charmed mesons.

→ The A+A data → enhancement of dimuons in the invariant mass region (IMR) between Φ and J/ψ meson masses.

→ The nature of the described phenomenon encountered in dimuon production in the IMR can be finally concluded by:

→ Only a direct measurement of open charm production in nucleus-nucleus collisions at SPS energies.
NA61/SHINE Experiment

NA61/SHINE at the CERN SPS

LHC

NA61

SPS
NA61/SHINE physics goals

SHINE = SPS Heavy Ion and Neutrino Experiment

➢ Search for the critical point of strongly interacting matter.

➢ Study the properties of the onset of deconfinement in nucleus-nucleus collisions.

➢ Hadron production reference measurements for neutrino (T2K) and cosmic-ray (Pierre Auger Observatory, KASCADE-Grande and KASCADE) experiments.

➢ Study of high transverse momentum phenomena in proton-nucleus and proton-proton interactions.
Beam detectors and triggering → A set of upstream scintillator and Cherenkov counters and beam Position detectors provides timing reference, charge and position measurements.

Time Projection chambers → Four large volume TPC’s serve as tracking detectors.

Time of Flight walls → Mainly used for Hadron Identification.

Projectile Spectator Detector (PSD) → A Calorimeter which is positioned downstream of the time of flight detectors, measure energy of projectile fragments.
NA61/SHINE detector - Top view
Vertex detector Position

Position of the future vertex detector
Feasibility Studies
Physical Input

→ AMPT (A MultiPhase Transport model) event generator used to generate 200k Pb+Pb events at 158 AGeV for 0-10% centrality

→ AMPT predicts 0.01 of $<\text{D}^0> + <\bar{\text{D}}^0>$ per central Pb+Pb event. this seems to be under-predicted value.

→ The prediction of the HSD model is \sim0.2. HSD model was tuned to properly describe available $p+A$ and $\pi+A$ charm production data at SPS energies. (Nucl. Phys. A 691, 753 (2001)).

→ HSD (Hadron String Dynamic) Model predictions are consistent with scaled PYTHIA → We scaled AMPT predictions to be consistent with HSD and PYTHIA.
→ AMPT does not generate “Open Charm” at 40 AGeV.

→ Width of the rapidity distribution and Invariant mass slope parameter does not change by more than 10% for Kaons while going from 158 AGeV to 40 AGeV.

→ We assumed similar changes for D0 as we observe for Kaons and its yield as predicted by HSD model.

HSD : (Int. J. Mod. Phys. E17 1367)
Open Charm measurements → feasible with a dedicated vertex detector

→ \(S/B = 17 \)
→ \(\text{SNR}(\text{@50M}) = 246 \)
→ 64300 detected \(D^0 + D^0 \bar{\text{bar}} \) mesons in 50M central Pb+Pb (PID)

→ \(S/B = 1 \)
→ \(\text{SNR}(\text{@50M}) = 197 \)
→ 64300 detected \(D^0 + D^0 \bar{\text{bar}} \) mesons in 50M central Pb+Pb (PID)

→ \(S/B = 1.0 \)
→ \(\text{SNR}(\text{@50M}) = 11.3 \)
→ 2000 detected \(D^0 + D^0 \bar{\text{bar}} \) mesons in 50M central Pb+Pb (PID)

158 AGeV

40 AGeV
We used developed simulation to determine requirements for the detector which are:

→ We can expect very high hit occupancy on the level of 5 hit/mm2/event in the most inner part of the vertex detector.

→ It suggests that silicon pixel sensors would provide a good solution for us.
Estimates of NA61/SHINE requirements and limits for different chip technologies

<table>
<thead>
<tr>
<th></th>
<th>NA61</th>
<th>Hybrid</th>
<th>CCD</th>
<th>MIMOSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>< 5 μm</td>
<td>30 μm</td>
<td>< 5 μm</td>
<td>< 3.5 μm</td>
</tr>
<tr>
<td>Mat. Budg.</td>
<td>Few 0.1 X_o</td>
<td>~1% X_o</td>
<td>~0.1% X_o</td>
<td>~0.05% X_o</td>
</tr>
<tr>
<td>Rad. Tol (1)</td>
<td>3×10^{10} neq/cm2</td>
<td>$>10^{14}$ neq/cm2</td>
<td>$<10^9$ neq/cm2</td>
<td>$>10^{13}$ neq/cm2</td>
</tr>
<tr>
<td>Rad. Tol (2)</td>
<td>~1 krad</td>
<td>~10 Mrad</td>
<td>~1 Mrad</td>
<td>~300 krad</td>
</tr>
<tr>
<td>Time resolution</td>
<td>~100 μs</td>
<td>~20 μs</td>
<td>~100 μs</td>
<td>~115.2 μs</td>
</tr>
</tbody>
</table>

Rad. Tol (1) and (2) refers to non ionizing and ionizing dose per week beam on Target

→ MIMOSA-26 seems to be very much feasible device
Test of Prototype in 2015 (Ar + Ar/Ca)

Simulation results: prototype setup geometry

500k 0-10% central Ar+Ar at 158 GeV

Again cuts are optimized to central Pb+Pb at 158 AGeV (cuts may be relaxed for Ar+Ar/Ca)

~ 20 D^0 + D^0\bar{\text{bar}}

For “no Pid” analysis S/B=11 and SNR= 4.6

Measurement with the setup geometry seems to be feasible if we collect ~500k central events (and if HSD yields are not significantly over-predicted)
Summary

→ Measurement of heavy flavor mesons → better understanding → nucleus-nucleus reactions at relativistic energies.

→ Upgradation of the NA61/SHINE experiment with a dedicated vertex detector equipped with MIMOSA-26 sensors as detection units → feasible for open charm measurements.

→ Building Prototype and Tests (on beam) to show that keeping sensors in flowing and conditioning helium will ensure reasonably low and stable sensor temperature (to keep fake hits low)

→ Differential measurements for open charm
ETH, Zurich, Switzerland
Fachhochschule Frankfurt, Frankfurt, Germany
Faculty of Physics, University of Sofia, Sofia, Bulgaria
Karlsruhe Institute of Technology, Karlsruhe, Germany
Institute for Nuclear Research, Moscow, Russia
Institute for Particle and Nuclear Studies, KEK, Tsukuba, Japan
Jagiellonian University, Cracow, Poland
Joint Institute for Nuclear Research, Dubna, Russia
Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest, Hungary
LPNHE, University of Paris VI and VII, Paris, France
University of Silesia, Katowice, Poland
Rudjer Boskovic Institute, Zagreb, Croatia
National Center for Nuclear Research, Warsaw, Poland
St. Petersburg State University, St. Petersburg, Russia
Laboratory of Astroparticle Physics, University Nova Gorica, Nova Gorica, Slovenia
Jan Kochanowski University in Kielce, Poland
University of Athens, Athens, Greece
University of Bergen, Bergen, Norway
University of Bern, Bern, Switzerland
University of Frankfurt, Frankfurt, Germany
University of Geneva, Geneva, Switzerland
University of Warsaw, Warsaw, Poland
Warsaw University of Technology, Warsaw, Poland
University of Wrocława, Wrocław, Poland
University of Belgrade, Belgrade, Serbia

~ 150 Participants
16 Countries
THANK YOU!
Acknowledgments

→ We acknowledge the support by the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund.

→ NA61 Collaboration
NA61/SHINE Experiment

NA61/SHINE at the CERN SPS
BACK UP SLIDES
Other Ideas: sequential dissociation

If similar anomalous feature is visible in open charm we will be able to characterize it in a wide range of SPS energies:

Table 2. Average values of $dN_{ch}/d\eta/(0.5N_{p})$ at different $\sqrt{s_{NN}}$. An additional 5% error should be added to columns 17.2 GeV through 4.8 GeV for the uncertainty related to recalculation to the C.M.S..

<table>
<thead>
<tr>
<th>N_{p}</th>
<th>200 GeV RHIC aver.</th>
<th>130 GeV RHIC aver.</th>
<th>62.4 GeV PHENIX prelim.</th>
<th>19.6 GeV PHENIX/PHOBOS aver.</th>
<th>17.2 GeV SPS aver.</th>
<th>8.7 GeV SPS aver.</th>
<th>4.8 GeV E806/E917 combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>3.92±0.13</td>
<td>3.41±0.10</td>
<td>2.77±0.21</td>
<td>1.91±0.11</td>
<td>1.97±0.12</td>
<td>1.26±0.11</td>
<td>0.92±0.14</td>
</tr>
<tr>
<td>350</td>
<td>3.81±0.13</td>
<td>3.31±0.10</td>
<td>2.68±0.20</td>
<td>1.89±0.11</td>
<td>1.93±0.12</td>
<td>1.22±0.11</td>
<td>0.89±0.13</td>
</tr>
<tr>
<td>325</td>
<td>3.72±0.12</td>
<td>3.22±0.10</td>
<td>2.60±0.20</td>
<td>1.88±0.11</td>
<td>1.90±0.14</td>
<td>1.20±0.11</td>
<td>0.85±0.13</td>
</tr>
<tr>
<td>300</td>
<td>3.65±0.12</td>
<td>3.16±0.10</td>
<td>2.54±0.19</td>
<td>1.87±0.11</td>
<td>1.88±0.15</td>
<td>1.18±0.10</td>
<td>0.81±0.12</td>
</tr>
<tr>
<td>275</td>
<td>3.56±0.12</td>
<td>3.11±0.09</td>
<td>2.48±0.19</td>
<td>1.87±0.12</td>
<td>1.83±0.16</td>
<td>1.17±0.10</td>
<td>0.78±0.12</td>
</tr>
<tr>
<td>250</td>
<td>3.51±0.12</td>
<td>3.07±0.09</td>
<td>2.43±0.19</td>
<td>1.85±0.12</td>
<td>1.80±0.17</td>
<td>1.16±0.10</td>
<td>0.76±0.11</td>
</tr>
<tr>
<td>225</td>
<td>3.45±0.12</td>
<td>3.04±0.10</td>
<td>2.37±0.19</td>
<td>1.83±0.12</td>
<td>1.78±0.17</td>
<td>1.16±0.10</td>
<td>0.75±0.11</td>
</tr>
<tr>
<td>200</td>
<td>3.38±0.11</td>
<td>3.00±0.09</td>
<td>2.30±0.19</td>
<td>1.81±0.12</td>
<td>1.75±0.17</td>
<td>1.14±0.10</td>
<td>0.74±0.11</td>
</tr>
<tr>
<td>175</td>
<td>3.34±0.12</td>
<td>2.96±0.10</td>
<td>2.23±0.20</td>
<td>1.76±0.13</td>
<td>1.72±0.17</td>
<td>1.14±0.09</td>
<td>0.72±0.11</td>
</tr>
<tr>
<td>150</td>
<td>3.27±0.12</td>
<td>2.89±0.10</td>
<td>2.13±0.20</td>
<td>1.72±0.14</td>
<td>1.69±0.17</td>
<td>1.14±0.09</td>
<td>0.71±0.11</td>
</tr>
<tr>
<td>125</td>
<td>3.20±0.12</td>
<td>2.83±0.10</td>
<td>2.02±0.22</td>
<td>1.68±0.15</td>
<td>1.66±0.16</td>
<td>1.14±0.09</td>
<td>0.70±0.11</td>
</tr>
<tr>
<td>100</td>
<td>3.14±0.13</td>
<td>2.73±0.11</td>
<td>1.89±0.22</td>
<td>1.62±0.19</td>
<td>1.66±0.23</td>
<td>1.14±0.09</td>
<td>0.67±0.14</td>
</tr>
<tr>
<td>75</td>
<td>3.03±0.13</td>
<td>2.65±0.11</td>
<td>1.89±0.24</td>
<td>1.61±0.21</td>
<td>1.61±0.21</td>
<td>1.14±0.09</td>
<td>0.64±0.18</td>
</tr>
<tr>
<td>50</td>
<td>2.73±0.13</td>
<td>2.53±0.12</td>
<td>1.54±0.19</td>
<td>0.63±0.21</td>
<td>1.54±0.19</td>
<td>1.14±0.09</td>
<td>0.63±0.21</td>
</tr>
<tr>
<td>25</td>
<td>2.78±0.43</td>
<td>2.36±0.30</td>
<td>1.45±0.13</td>
<td>0.63±0.21</td>
<td>1.45±0.13</td>
<td>1.14±0.09</td>
<td>0.63±0.21</td>
</tr>
</tbody>
</table>
Other Ideas: sequential dissociation

Karsch, Kharzeev, Satz (2006):
→ J/ψ can survive up to $1.5T_c$, however and are dissociated just above T_c

→ J/ψ suppression due to sequential dissociation at given energy density

→ energy density from Bjorken formula, $N_{\text{part}} \to$ centrality \to overlapping surface

SPS and RHIC data on J/ψ production are re consistent when plotted versus energy density !!!
Other Ideas: sequential dissociation

If similar anomalous feature is visible in open charm we will be able to characterize it in a wide range of SPS energies:

\[\varepsilon = \varepsilon(N_{\text{Part}} = 100, \sqrt{s_{\text{NN}} = 17.2}) \]

Same energy density as that at top SPS and \(N_{\text{Part}} \sim 100 \) can be obtained at 30 AGeV but at most central collisions

It was shown that measurement are feasible at 40 AGeV \(\rightarrow \) energy scan
Other Ideas: sequential dissociation

If similar anomalous feature is visible in open charm we will be able to characterize it in a wide range of SPS energies:

\[\epsilon = \epsilon(N_{\text{Part}} = 100, \sqrt{s_{\text{NN}}} = 17.2) \]

Same energy density as that at top SPS and \(N_{\text{Part}} \sim 100 \) can be obtained at 30 AGeV but at most central collisions.

It was shown that measurement are feasible at 40 AGeV \(\rightarrow \) energy scan.
Detection Strategy

→ Distance between interaction Point and decay point is measurable

<table>
<thead>
<tr>
<th>Meson</th>
<th>Decay Channel</th>
<th>C_{τ}</th>
<th>Branching Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$D^0 \rightarrow K^- + \pi^+$</td>
<td>122.9μm</td>
<td>$(3.91\pm0.05)%$</td>
</tr>
<tr>
<td>D^0</td>
<td>$D^0 \rightarrow K^- + \pi^+ + \pi^+ + \pi^-$</td>
<td>122.9μm</td>
<td>$(8.14\pm0.20)%$</td>
</tr>
<tr>
<td>D^+</td>
<td>$D^+ \rightarrow K^- + \pi^+ + \pi^+$</td>
<td>311.8μm</td>
<td>$(9.2\pm0.25)%$</td>
</tr>
<tr>
<td>D^+_s</td>
<td>$D^+_s \rightarrow K^+ + K^- \pi^+$</td>
<td>149.9μm</td>
<td>$(5.50\pm0.28)%$</td>
</tr>
<tr>
<td>D^{*+}</td>
<td>$D^{*+} \rightarrow D^0 + \pi^+$</td>
<td>------</td>
<td>$(61.9\pm2.9)%$</td>
</tr>
</tbody>
</table>
Why Charm? – an ideal probe for studying QGP

- Charm quarks created at early stage of HIC
 → total yields scaled by N_{bin}
- Sensitive to the partonic rescatterings
- Collectivity, flow
 → indication of light flavor thermalization (to some degree)

B. Mueller, nucl-th/0404015
Reconstruction

- Track distance in VTPC1 + VTPC2 > 1m
- Require hit at least in the three Vertex detector stations
- NA61/SHINE Momentum resolutions is assumed
 1. momentum resolution $dp/p^2 = 7.0 \times 10^{-4}(\text{GeV/c})^{-1}$ (Nuclear Instruments and Methods in Physics Research A 430 (1999) 210 - 244)
 2. position resolution is 10 μm → hits are spread in y and x around geant hit according to the Gaussian distribution ($\sigma = 10 \mu$m). Track line is taken from the fit to the spread points.
AMPT-MODEL
Reconstructed yield for $D^0 \rightarrow K^+ \pi^-$, 200k 0-10% cent. Pb+Pb at 158 AGeV

![Graph showing the reconstructed yield for $D^0 \rightarrow K^+ \pi^-$](image)

<table>
<thead>
<tr>
<th>Pos. Res (μm)</th>
<th>10</th>
<th>10</th>
<th>15</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam hole (mm)</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>S/B</td>
<td>9.6</td>
<td>10.0</td>
<td>4.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Signal Significance (SNR)</td>
<td>209.6</td>
<td>199.4</td>
<td>175.4</td>
<td>174</td>
</tr>
<tr>
<td>$\langle D^0 \rangle + \langle \bar{D}^0 \rangle$</td>
<td>48K</td>
<td>43K</td>
<td>37K</td>
<td>36K</td>
</tr>
</tbody>
</table>

* Results Extrapolated to 50M Events
VDS Stations are located at the distance of 5, 10, 15 and 20 cm respectively from the Target.
NA61/SHINE detector

- Four large volume **Time Projection Chambers (TPCs)**: VTPC-1, VTPC-2 (inside superconducting magnets), MTPC-L, MTPC-R; measurement of dE/dx and p. **Time of Flight (ToF) detector walls.**

- **Projectile Spectator Detector (PSD)** for centrality measurement (energy of projectile spectators) and determination of reaction plane; **resolution of 1 nucleon (!)** in the studied energy range (important for fluctuation analysis).

- **Helium beam pipes** inside VTPC-1 and VTPC-2 (to reduce δ-electrons).

- **Z-detector** (measures ion charge for on-line selection of secondary ions, **A-detector** (measures mass composition of secondary ion beam).

- **Low Momentum Particle Detector (LMPD)** for centrality determination in p+A; measures target nucleus spectators.

- **Large acceptance**: ≈ 50%
- **High momentum resolution**: $\sigma(p)/p^2 \approx 10^{-4} \text{ GeV/c}^{-1}$ (at full B=9 T·m)
- **ToF walls resolution**: ToF-L/R: $\sigma(t) \approx 60$ ps; ToF-F: $\sigma(t) \approx 120$ ps
- **Good particle identification**: $\sigma(\text{dE/dx})/\langle\text{dE/dx}\rangle \approx 0.04$; $\sigma(m_{\text{inv}}) \approx 5$ MeV
- **High detector efficiency**: > 95%
- **Event rate**: 70 events/sec
2. Cut on d

Relatively smooth shape of background at ~ 0 is due to uncertainly in reconstruction of track position and angle. Some uncertainly comes from multiple scattering.

\rightarrow cut on $d < 40 \, \mu$m as indicated
4. cut on V_z

\rightarrow cut on $V_z < 500 \ \mu m$ as required
For the studies at 40 AGeV energy the whole phase space (physical input) was not available by AMPT event generator.

From the rapidity distributions for kaons at both energies 40 and 158 AGeV and for D0 meson at 158 AGeV respectively:

\[
\frac{\text{Sigma K}(158)}{\text{Sigma K}(40)} = \frac{\text{Sigma D}(158)}{\text{Sigma D}(40)}
\]

Temperature from transverse mass distributions by fitting exponential function \(A \exp(-mt/T) \)

Parameters for 40 AGeV

- **Chi-squared / ndf**: 54.74 / 19
- **Constant**: 286.4 ± 18.7
- **T**: 0.2412 ± 0.0087

Kplus @ 40 AGeV

- **Chi-squared / ndf**: 311.4 / 26
- **Constant**: 20.63 ± 0.14
- **Mean**: 0.003231 ± 0.0005150
- **Sigma**: 0.9138 ± 0.0033
VTPCs filled with Ar-CO2 mixture, location and dimensions as in Na61 setup. Uniform magnetic field: 1.5 T in VTPC1 and 1.1 T in VTPC2
The figure shows hits (x, y) distribution generated by signal tracks is Vds1. The dashed boxes represent the cuts. We found that \(\sim 99.5\% \) of signal tracks is localized within the box \(2 \times 4 \text{ cm}^2 \). As we can see, to cover the remaining 0.5\% we would need to extend the cut in the x direction for almost factor of 2.
For stations Vds2-Vds4 we just extend size of the boxes in proportion to their distance from the target. So we got dimensions: 4x8 cm², 6x12 cm² and 8x16 cm² for Vds2, Vds3 and Vds4, respectively. The signal lost is kept below 1% for each station. For Pb+Pb at 40 AGeV the signal lost is on the level of 4% for the same cuts.
Signal track distribution at 158 AGeV in VDS3 and VDS4

VDS3

0.8% signal lost in outer region

VDS4

0.9% signal lost in outer region
Background suppression strategy (Need to discuss)

List of cuts in the order they are applied

Single particle cuts:

1. track \(p_T\) cut
2. track \(d\) cut (track impact parameter)

Two particle cuts:

3. cuts in Armenteros-Podolanski space to remove background from \(K_s\) and \(\Lambda\)
4. two track vertex cut \(V_z\)
5. reconstructed parent impact parameter cut \(D\)

The average multiplicity for 158A\(\text{GeV}\) is \(0.01 \times \frac{1}{0.0378} = 0.26\) (consistent with HSD) for 40 A\(\text{GeV}\) it is 0.01
1. cut on p_T

Background p_T spectrum has maximum around $\sim 0.2\text{GeV/c}$, whereas maximum of signal distribution is at around 1 GeV/c

→ cut on $p_T<0.4$ as indicated
3. cut on D

V_z cut reduces background at $D \sim 0$, where the signal is located $\rightarrow V_z$ and D cuts are nicely complementary to each other

\rightarrow cut on $D > 0.022$ mm
Charged Particle Fluxes

Sources of particles hitting VD:
 - during spill the anticipated beam intensity is 105 Pb ions per second.
 - for 200 μm Pb target interaction probability is 0.5% which leads to 500 Hz interaction rate
 - used AMPT to generate 100k min. bias Pb+Pb at 158 AGeV

2. Delta electrons produced mostly in target
 - study 10k Pb ions passing through the lead target
 - soft particles – surrounding material might be important
 - production threshold cut in geant4: minimum distance that produced particle will travel in a given material \rightarrow translates to cut on energy
 If the distance is (too) small \rightarrow a lot of soft particles is produced (CPU consumption)
 If the distance is (too) large \rightarrow important component might not be described

\rightarrow the influence of the production threshold cut has to be studied
The following conceptual drawings are based on MIMOSA-26 chip hosting sensitive area of about 1.06 x 2.12 cm² with the pixel pitch equal 18.4 µm (~663.5k pixels/chip):

4.1 MIMOSA26 Pad Ring and Floor Plan View

These pads are for testing purpose and can be removed.

The readout speed of the whole frame in ~100 µs (10 kHz), zero suppression circuit.

The chips are available. We can just buy them from IPHC (Institut Pluridisciplinaire Hubert Curien), Strasbourg.
δ-electrons and charge particles produced in Pb+Pb interaction

Delta electrons
(averaged over 10k Pb events)

Charged particles produced in Pb+Pb interactions
Particle Flux:

- During spill the anticipated beam intensity is 105 Pb ions per second.
- For 200 μm Pb target interaction probability is 0.5% which leads to 500 Hz interaction rate

Hadronic interactions:
flux = (105 * 0.005) event/s * 1.6 particles/mm²/event = 800 particles/mm²/s = 800 Hz/mm²

Electromagnetic interactions (δ-electrons):
flux = 105 event/s * 0.04 particles/mm²/event = 4000 Hz/mm²

Rate of Flux is not critical, for the future detectors
Fluence estimates
Performance of MIMOSA-26 → test on beam

- Temperature: +30°C
- Readout Time: 125 μs
- Pitch size: 20.7 μm
- Irradiated with fluence $= 3 \times 10^{12} n_{eq}/\text{cm}^2$

For disc. Threshold= 5 mV:
- detection efficiency $\sim 99.8\%$
- fake hits $< 10^{-4}$
- resolution $\sim 3.5 \mu$m

(M.Winter, CBM Progress Report 2010)
Displacement Damage Function

Bulk damage exclusively depends upon non ionizing energy lose (NIEL). This is described by the displacement damage functions \(D(E) \)

Hadronic interactions:
- flux = \((105 * 0.005)\) event/s * 1.6 particles/mm\(^2\)/event = 800 Hz/mm\(^2\)

Electromagnetic interactions (\(\delta\)-electrons):
- flux = 105 event/s * 0.04 particles/mm\(^2\)/event = 4000 Hz/mm\(^2\)

(A. Vasilescu, ROSE Internal Note ROSE/TN/97-2 (1997))
Fluence Calculations

\[\Phi_{eq\ 1\text{MeV}} = \chi \Phi \quad \chi - \text{radiation hardness parameter} \]

\[\chi = 0.62/5 \text{ for electrons} \]

\[\chi = 0.62 \text{ for particles from hadronic interactions} \]

Fluence for electrons in [for 1 month] (upper limit):

\[= 4 \times 10^5 \text{ /cm}^2/\text{sec} \times 0.62/5 \times 2592000 \text{ sec} = 1.28 \times 10^{11} \text{ neq/cm}^2 \]

For Spill of the beam (20%) = 2.57 \times 10^{10} \text{ neq/cm}^2

\[\Phi \text{ for charge Particles} = 800 \text{ Hz/mm}^2 \]

Fluence for charged particles [for 1 month] (upper limit):

\[= 8 \times 10^4 \text{ /cm}^2/\text{sec} \times 0.62 \times 2592000 \text{ sec} = 1.28 \times 10^{11} \text{ neq/cm}^2 \]

For Spill of the beam (20%) = 2.57 \times 10^{10} \text{ neq/cm}^2

Factor of 40 below the tested range
Pixel Occupancy
As usually looking at the most critical area of Vds1 where the track occupancies are:

1. 5 tracks/mm\(^2\)/event for central Pb+Pb collisions
2. 1.6 tracks/mm\(^2\)/event from averaging over minimum bias Pb+Pb collision
3. 0.04 δ-electrons/mm\(^2\)/event for Pb ion on 200 μm target

P(0) = 95% - empty frame
P(1) = 4.7% - single event
P(2) = 0.12% (pile-up P(2)/P(1) = 2.5%)

Beam intensity of 100kHz will lead to 10 ions in 100 μs

Single Pixel Occupancy = 0.25% (+0.01% contribution from fake hits)

→ Not very dense environment → probability of overlap low, however we need full simulation to prove the reconstruction feasibility
Charmonium as a probe for the properties of the QGP
& Charmonium suppression

The main idea: implant charmonia into the QGP and observe their modification, in terms of suppressed (or enhanced) production in nucleus-nucleus collisions with or without plasma formation.

assumptions:
• all charmonia are produced before QGP formation
• suppression takes place in QGP
• some charmonia might survive beyond T_c

→ sequential suppression pattern due to feeding

actually, in 1978, Edward Shuryak investigated gluonic destruction of charmonium,

\[gJ/\psi \rightarrow \bar{c}c \]

and concluded that it would not survive the gluon-rich plasma