Three-Nucleon Force (3NF) in Deuteron Disintegration

By: Ghanshyam Khatri

Supervisors:
Prof. Stanisław Kistryn, (Jagiellonian University, Poland)
Prof. Nasser Kalantar-Nayestanaki, (KVI & University of Groningen, The Netherlands)
Prof. Giuseppina Orlandini, (University of Trento, Italy)
Prof. Antonio Carlos Sa Fonseca, (University of Lisbon, Portugal)
Outline

- Introduction and Motivation
- Aim
- Present Status and Future
- End
How many known forces in Nature?

1. Gravity (Newton’s apple)
2. Electromagnetic (Sun light)
3. Weak Nuclear (Fukushima & Chernobyl)
4. Strong Nuclear (Reactor & Bombs)

1935 (Yukawa-theory): ‘Meson exchange between two nucleon’

1947 (Powell & his team): ‘Experimentally found Meson’
Intro & Motivation

...today after almost 6 decades!

Modern NN potential theories:

- Nijm I
- Nijm II
- CD-Bonn
- AV18
- ...

...are able to explain the Interaction between two nucleons accurately e.g. np-scattering

but...........

unable to reproduce three-nucleon system e.g. nd-scattering

High precision data from Los Alamos
W. P. Abfalterer et al., PRL 81, 57 (1998)
...something is missing in the theories! \((V_{th} \neq V_{exp})\).

<table>
<thead>
<tr>
<th>Model</th>
<th>Triton B.E. [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nijm I</td>
<td>7.72</td>
</tr>
<tr>
<td>Nijm II</td>
<td>7.62</td>
</tr>
<tr>
<td>Argonne V18</td>
<td>7.62</td>
</tr>
<tr>
<td>Reid-93</td>
<td>7.63</td>
</tr>
<tr>
<td>Experiment</td>
<td>8.48</td>
</tr>
</tbody>
</table>

\[V_{12} + V_{23} + V_{31} = V_{th} \]

\[\text{Missing..!!!} \]

\[3N \text{ System} \]

\[V_{exp}. \]
Intro & Motivation

...a new notion: Three-Nucleon Force (3NF)

\[V_{12} + V_{23} + V_{31} = V_{\text{theory}} \]

\[3NF = V_{123} \]

...adding 3NF in original 2NF helps!

<table>
<thead>
<tr>
<th>Model</th>
<th>(^3\text{H} [\text{MeV}])</th>
<th>(^4\text{He} [\text{MeV}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2NF</td>
<td>7.62</td>
<td>24.2</td>
</tr>
<tr>
<td>2NF +3NF</td>
<td>8.47</td>
<td>28.3</td>
</tr>
<tr>
<td>Experiment</td>
<td>8.48</td>
<td>28.4</td>
</tr>
</tbody>
</table>

additional 3NF

CD-Bonn+**TM99**
AV18+**Urbana XI**

H. Witala et al. **PRL 81, 1183 (1998)**
St. Kistryn et al. **PRC 68, 054004 (2003)**
• 3NF is very small effect: requires high precision data

• Urgent need for enough data base for such study at intermediate energies: will help to develop theories

• Most simple reaction for studying 3NF: dd and dp (breakup and elastic Scattering)

• Different Observables: Measuring Cross-Sections and Analyzing Powers

• BINA detector facility at KVI, The Nederland: best suited for such study, covers large phase-space detection (4π solid angle of detection area)
The new 4π detector, BINA

Big Instrument for Nuclear-polarization Analysis (BINA)
Present Status and Future

- KVI has stopped experiments with BINA system: plan to bring it in Krakow, our own accelerator facility (expected by late 2012)

- Analysis of data from previous experiments: current task

- WASA-at-COSY facility, Germany: another option, facility of polarized beam is plus point

Next Steps:

- Extend study of 3NF in larger nuclear systems (A>3): 4NF?
- Studying many body systems, Nuclear Matter
- Relativistic and Coulomb Corrections: fine tuning of theories
- Understanding Nuclear Forces with high accuracy may help in useful application for human kind: e.g. in Medical Application
Thank you for attention!
Acknowledgment

1. Foundation for Polish Science (FNP)
2. Group of Prof St. Kistryn, UJ
3. Prof P. Moskal, UJ
4. Group of prof N. Kalantar, KVI
5. Prof B. Kamys
6. Fellow PhD students, UJ
7. ...

Thank you for your support and help