Garfield Simulation of Scintillation Ionization Detector (SID)

Outline
• Physics case
• Scintillation Ionization Detector (SID)
• Garfield Simulation
• summary

Jinesh Kallunkathariyil
Physics case

Super Heavy Elements (SHE):
- Stable elements (theoretical prediction)
- Located at the island of stability (Z=114, N=184)
- Production cross-section at laboratory is very low (~ 1 pb)

- Identification of (SHE) by the detection of spontaneous fission fragments.

\[^{208}\text{Pb} + ^{44}\text{Ca} \rightarrow ^{252}\text{No} \rightarrow ^{250}\text{No} + 2\text{n} \]
Scintillation Ionization Detector (SID)

MWPC is made of:
• 3 vertical wire planes (x)
• 2 horizontal wire planes (y)
• each wire plane is separated by grounded Mylar stopper

MWPC is made of:
• Scintillation detector
• Segmented Multi-Wire Proportional Chamber (MWPC)
• In the same gas (CF4)

• Pressure of the gas adjusted to stop the SHE inside one of the grounded stopping Mylar foils
• Scintillation part used for fast selection of the incoming heavy nuclei
Scintillation Ionization Detector (SID) (continued ...)

Wire-plane:
- 19 sense wires (Anode)
- 20 field shaping wires (Cathode)
- 0.1 inches distance between A and K
- High positive voltage at Anode
- Cathode at ground potential

- position
- angular distribution of the fission fragments
Garfield Simulation

Garfield:
- computer program for the detailed simulation gaseous detectors
- An interface to the Magboltz program for the computation of electron transport properties in gas

1. Electric field

- Large electric field near Anode wire
- Amplification takes place around Anode wire ~ 5 times radii
2. Electron drift and ion drift

- Number of electrons collected at anode is inversely proportional to the cathode voltage
- Cathode voltage must be less than 60% of Anode for ~100% electron collection at Anode

Only 65 percentage of the total ions are collected at Cathode for a Cathode voltage of 0V
3. Gas gain

\[G(\Delta x) = \exp \left(\int_{x_0}^{x_1} \alpha(E(x)) \, dx - \int_{x_0}^{x_1} a(E(x)) \, dx \right) \]

- Townsend coefficient \(\alpha \): Mean number of ionization per unit length
- Attachment coefficient \(a \): Mean number of attachment of electron per unit length

Single electron response - Polya distribution

\[\frac{\partial p_{\text{ioni}}}{\partial x} = \alpha \left(b + \frac{1 - b}{N} \right) \]

\[P(N_{\text{SER}}, \theta) = C \frac{(\theta + 1)^{\theta + 1}}{\Gamma(\theta + 1)} \left[\frac{N_{\text{SER}}}{N_{\text{SER}}} \right]^{\theta} \exp \left(- (\theta + 1) \frac{N_{\text{SER}}}{N_{\text{SER}}} \right) \]

\(N_{\text{SER}} \) is the current size of avalanche, \(\theta = b^{-1} \)
4. Resolution

Relative gain variance

\[f = \frac{1}{1 + \theta} = \left(\frac{\sigma_{SER}}{N_{SER}} \right)^2 \]

Energy resolution is

\[
\left(\frac{\sigma_Q}{Q} \right)^2 = \left(\frac{\sigma_{N_0}}{N_0} \right)^2 + \frac{1}{N_0} \left(\frac{\sigma_{N_{SER}}}{N_{SER}} \right)^2 = \frac{F}{N_0} + \frac{f}{N_0}
\]

F, Fano factor of gas:

- Measure of dispersion of the probability distribution of fano noise ie: Variance / Mean

<table>
<thead>
<tr>
<th>Anode Voltage</th>
<th>Gain (deterministic)</th>
<th>Gain (Garfield)</th>
<th>(\theta)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>303.62</td>
<td>403.2</td>
<td>0.29</td>
<td>0.75</td>
</tr>
<tr>
<td>0.2</td>
<td>120.66</td>
<td>80.2</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>0.4</td>
<td>48.7</td>
<td>37.3</td>
<td>1.60</td>
<td>0.37</td>
</tr>
<tr>
<td>0.6</td>
<td>20.36</td>
<td>15.2</td>
<td>2.00</td>
<td>0.32</td>
</tr>
<tr>
<td>0.8</td>
<td>8.84</td>
<td>7.5</td>
<td>2.24</td>
<td>0.29</td>
</tr>
<tr>
<td>1.0</td>
<td>4.03</td>
<td>3.49</td>
<td>3.39</td>
<td>0.21</td>
</tr>
<tr>
<td>700V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>35.23</td>
<td>23.3</td>
<td>1.85</td>
<td>0.34</td>
</tr>
<tr>
<td>0.2</td>
<td>19.14</td>
<td>14.6</td>
<td>2.14</td>
<td>0.30</td>
</tr>
<tr>
<td>0.4</td>
<td>10.61</td>
<td>8.4</td>
<td>2.61</td>
<td>0.26</td>
</tr>
<tr>
<td>0.6</td>
<td>6.03</td>
<td>4.8</td>
<td>3.00</td>
<td>0.25</td>
</tr>
<tr>
<td>0.8</td>
<td>3.55</td>
<td>2.9</td>
<td>4.20</td>
<td>0.18</td>
</tr>
<tr>
<td>1.0</td>
<td>2.19</td>
<td>1.9</td>
<td>5.18</td>
<td>0.16</td>
</tr>
<tr>
<td>500V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>9.12</td>
<td>7.53</td>
<td>2.34</td>
<td>0.28</td>
</tr>
<tr>
<td>0.2</td>
<td>6.1</td>
<td>4.73</td>
<td>3.60</td>
<td>0.20</td>
</tr>
<tr>
<td>0.4</td>
<td>4.15</td>
<td>3.38</td>
<td>3.86</td>
<td>0.19</td>
</tr>
<tr>
<td>0.6</td>
<td>2.88</td>
<td>2.43</td>
<td>3.99</td>
<td>0.19</td>
</tr>
<tr>
<td>0.8</td>
<td>2.05</td>
<td>1.85</td>
<td>6.00</td>
<td>0.13</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>1.46</td>
<td>12.0</td>
<td>0.06</td>
</tr>
</tbody>
</table>
5. Signal

- Total signal duration \(\sim 4.5 \) mS
- Electron pulse duration < 125 nS
- Rise time \(\sim 35 \) nS
6. Tuning

- Sensitivity of pre-amplifier ~ 0.7 mV/MeV (Si)
- Energy needed to generate one electron pair in silicon detector is \(W \sim 3.6 \text{ eV} \)
- Total number of electron needed to detect 0.7 mV is, \(\frac{1 \text{ MeV}}{3.6 \text{ eV}} = 2.7 \times 10^5 \bar{e} \)

- If one of the spontaneous fission products of \(^{252}\text{Cf}, ^{140}\text{Xe}\) (with an initial energy of 80 MeV) pass through SID, It will generate an output signal of 6.1 mV (with a gain of 1 and gas pressure is at 100 mbar)

- For an alpha particle with an initial energy of 5 MeV, the signal generated is of 0.1 mV (gain of 1 and gas at 100 mbar)
Summary

- In order to detect alpha particle, we must have a gain around 100
- The output voltage for this gain would be too big (0.61 V) for heavy nuclei.
- Energy loss of SHE in Mylar and the thickness of Mylar has to be calculated
Thank you