Active magnetic shielding

Grzegorz Wyszyński

Department of Nuclear Physics, Uniwersytet Jagielloński

May 24, 2011
1. Neutron EDM measurement

2. Principle of operation of Active Magnetic Shielding

3. How it can be done?
 - Vector Spherical Harmonics
 - Current density functions based on VSH
 - Example 1 - single circular loop
 - Example 2 - Helmholtz coils
 - Other methods

4. Applications of magnetic shielding

5. Summary
Neutron EDM

- Electric Dipole Moment - if nonzero, breaks P and T symmetries
- By SM - $d \approx 10^{-32} \text{ e} \cdot \text{cm}$
- SUSY predicts $10^{-25} \text{ e} \cdot \text{cm} > d > 10^{-28} \text{ e} \cdot \text{cm}$
Frequency of precession: $h\nu = |2\mu_n B \pm 2d_n E|$

Measurement done, by changing relative direction of \vec{E}.

Difference between parallel and antiparallel fields: $h\Delta\nu = 4d_n E$
Systematic errors from measurement

<table>
<thead>
<tr>
<th>No.</th>
<th>Effect</th>
<th>Shift (Ref. [26]) $[10^{-27} \text{ ecm}]$</th>
<th>σ (Ref. [26]) $[10^{-27} \text{ ecm}]$</th>
<th>σ (Phase II) $[10^{-27} \text{ ecm}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Door cavity dipole</td>
<td>-5.60</td>
<td>2.00</td>
<td>0.10</td>
</tr>
<tr>
<td>2.</td>
<td>Other dipole fields</td>
<td>0.00</td>
<td>6.00</td>
<td>0.40</td>
</tr>
<tr>
<td>3.</td>
<td>Quadrupole difference</td>
<td>-1.30</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>4.</td>
<td>$\mathbf{v} \times \mathbf{E}$ translational</td>
<td>0.00</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>5.</td>
<td>$\mathbf{v} \times \mathbf{E}$ rotational</td>
<td>0.00</td>
<td>1.00</td>
<td>0.10</td>
</tr>
<tr>
<td>6.</td>
<td>Second-order $\mathbf{v} \times \mathbf{E}$</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>7.</td>
<td>ν_{Hg} light shift (geo phase)</td>
<td>3.50</td>
<td>0.80</td>
<td>0.40</td>
</tr>
<tr>
<td>8.</td>
<td>ν_{Hg} light shift (direct)</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>9.</td>
<td>Uncompensated B drift</td>
<td>0.00</td>
<td>2.40</td>
<td>0.90</td>
</tr>
<tr>
<td>10.</td>
<td>Hg atom EDM</td>
<td>-0.40</td>
<td>0.30</td>
<td>0.06</td>
</tr>
<tr>
<td>11.</td>
<td>Electric forces</td>
<td>0.00</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>12.</td>
<td>Leakage currents</td>
<td>0.00</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>13.</td>
<td>ac fields</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-3.80</td>
<td>7.19</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Apparatus for nEDM at PSi
How to deal with magnetic field contamination?

- Three square-Helmholtz coil pairs connected to Software calculating currents based on readouts from vector Fluxgate magnetometers
- Supression of magnetic field by 3 times
How does it work?

B=0
How does it work?
How does it work?
How does it work?

Current source

Grzegorz Wyszyński (IF UJ)
How to achieve it?

- We can use coils and magnetometers connected in such a way that we are sure that coils compensate field only in position of readout.
- Or we can design coils in such a way that they reduce most efficiently field in whole volume.
Physics standing behind it

Gauss Law
\[\nabla \cdot \vec{D} = \rho_f \]

Gauss Law for magnetism
\[\nabla \cdot \vec{B} = 0 \]

Faraday’s Law of induction
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial T} \]

Ampere’s Law
\[\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \]

Assumptions
- \(\rho = 0 \) - We have only conductors in our volume - no polarization
- \(\vec{D}(\vec{x}, t) = \epsilon \vec{E}(\vec{x}, t) \) i \(\vec{B}(\vec{x}, t) = \mu \vec{H}(\vec{x}, t) \) - Linear and isotropic media
Inside our volume there will be $\vec{J} = 0$

It all leads to equations for magnetic field:

$$\nabla \times \vec{B} = 0$$
$$\nabla \cdot \vec{B} = 0$$

We can define:

$$\vec{B}(r) = -\nabla \phi_m$$

Then:

$$\nabla^2 \phi_m = 0$$
We are looking for an orthogonal basis for vector function, which will help us in solving Physical Equation (involving ∇ operator).

Let’s take scalar field:

$$f(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) Y_{lm}(\theta, \phi)$$

$$Y_{lm} = \frac{1}{N} P_{l}^{m}(\cos \theta) e^{im\phi}$$

We can get vector field by simply taking a gradient of f:

$$\nabla f = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(Y_{lm} \nabla f_{lm} + f_{lm} \nabla Y_{lm} \right) =$$

$$= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\frac{d}{dr} f_{lm}(r) Y_{lm} \hat{r} + f_{lm} \nabla Y_{lm} \right)$$

\[\nabla f = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (Y_{lm} \nabla f_{lm} + f_{lm} \nabla Y_{lm}) = \]

\[= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\frac{d}{dr} f_{lm}(r) Y_{lm} \hat{r} + f_{lm} \nabla Y_{lm} \right) \]

- We can easily see two parts of the Vector Spherical Harmonics:

\[\vec{\Psi}_{lm}(\theta, \phi) \equiv r \nabla Y_{lm}(\theta, \phi) \]
\[\vec{Y}_{lm}(\theta, \phi) \equiv \hat{r} Y_{lm}(\theta, \phi) \]

- The third part is \(\vec{\Phi}_{lm}(\theta, \phi) \):

\[\vec{\Phi}_{lm}(\theta, \phi) \equiv \hat{r} \times \vec{\Psi}_{lm}(\theta, \phi) \]
Vector Spherical Harmonics

This basis is complete - it means that we can write every vector field by following:

\[\mathbf{V}(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(V_{lm}^r \mathbf{Y}_{lm} + V_{lm}^{(1)} \mathbf{\Psi}_{lm} + V_{lm}^{(2)} \mathbf{\Phi}_{lm} \right) \]

where:

\[V_{lm}^r = \int d\Omega \, \mathbf{V} \cdot \mathbf{Y}_{lm}^* \]

\[V_{lm}^{(1)} = \frac{1}{l(l+1)} \int d\Omega \, \mathbf{V} \cdot \mathbf{\Psi}_{lm}^* \]

\[V_{lm}^{(2)} = \frac{1}{l(l+1)} \int d\Omega \, \mathbf{V} \cdot \mathbf{\Phi}_{lm}^* \]
Applying VSH to our problem

\[\vec{J} = 0 \implies \nabla \times \vec{B} = 0, \]
Applying VSH to our problem

\[\vec{J} = 0 \implies \nabla \times \vec{B} = 0, \]

\[\vec{B} = -\nabla \phi_M, \]

\[\phi_M = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \phi_{lm}(r) Y_{lm}(\theta, \phi). \]
Appling VSH to our problem

\[\vec{J} = 0 \implies \nabla \times \vec{B} = 0, \]

\[\vec{B} = -\nabla \phi_M, \]

\[\phi_M = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \phi_{lm}(r) Y_{lm}(\theta, \phi). \]

Let’s put \(\vec{J} \neq 0: \)

\[\nabla \times \vec{B} = \nabla \times \left(\nabla \times \vec{A} \right) = \frac{4\pi}{c} \vec{J}. \]
\[\nabla \times \vec{B} = \nabla \times \left(\nabla \times \vec{A} \right) = \frac{4\pi}{c} \vec{J} \]

For \(A_{lm}^{(2)} \) (\(\vec{A} = \sum \sum A_{lm}^{(2)} \vec{\Phi} \)) this equation leads to:

\[\nabla \times \left(\nabla \times A_{lm}^{(2)} \vec{\Phi}_{lm} \right) = \frac{4\pi}{c} J_{lm}^{(2)} \vec{\Phi}_{lm} \]

What brings us to differential equation for \(A_{lm}^{(2)} \):

\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} A_{lm}^{(2)} \right) - \frac{l(l + 1)}{r^2} A_{lm}^{(2)} = -\frac{4\pi}{c} J_{lm}^{(2)} \]

Green function (solution for \(J_{lm}^{(2)} = \delta(\vec{r} - \vec{r}') \)):

\[A_{lm,G}^{(2)} = \frac{4\pi}{(2l + 1) c} \frac{r^L}{r'^{l+1}} (r')^2 \]
\begin{align*}
A_{lm,G}^{(2)} &= \frac{4\pi}{(2l + 1) c} \frac{r_<^l}{r>^{l+1}} (r')^2, \\
(r>, r<) &= \begin{cases}
(r, r') & \text{for } r > r', \\
(r', r) & \text{for } r < r'.
\end{cases}
\end{align*}
\[A_{lm, G}^{(2)} = \frac{4\pi}{(2l + 1)c} \frac{r_l^l}{r_l^{l+1}} (r')^2, \]

\[(r^+, r^-) = \begin{cases} (r, r') & \text{for } r > r', \\ (r', r) & \text{for } r < r'. \end{cases} \]

\[A_{lm}^{(2)} = r^l \frac{4\pi}{(2l + 1)c} \int_{0}^{\infty} (r')^{-l+1} J_{lm}^{(2)}(r') \, dr' \equiv r^l \alpha_{lm}, \]
\[A_{lm, G}^{(2)} = \frac{4\pi}{(2l + 1)c} \frac{r^l}{r} \frac{r^l+1}{(r')^2}, \]

\((r', r)\) for \(r < r'\),

\((r, r')\) for \(r > r'\).

\[A_{lm}^{(2)} = r^l \frac{4\pi}{(2l + 1)c} \int_0^\infty (r')^{-l+1} J_{lm}^{(2)}(r')dr' \equiv r^l \alpha_{lm}, \]

\[\vec{B} = \nabla \times \vec{A} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \alpha_{lm} \nabla \times \left(r^l \vec{\Phi}_{lm}(\theta, \phi) \right) \]

\[= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(-\frac{l(l+1)}{r} r^l \vec{Y}_{lm} - \frac{1}{r} \frac{d}{dr} r^{l+1} \vec{\Psi}_{lm} \right) \alpha_{lm}. \]
\[\vec{B} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(-l(l+1)r^{l-1}\alpha_{lm} \vec{Y}_{lm} - (l+1)r^{l-1}\alpha_{lm} \vec{\Psi}_{lm} \right), \]

\[\vec{B} = -\nabla \phi_M = -\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \nabla \left(\phi_{lm}(r) Y_{lm} \right) = \]

\[= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(-\frac{d}{dr} \phi_{lm}(r) \vec{Y}_{lm} - \frac{\phi_{lm}(r)}{r} \vec{\Psi}_{lm} \right), \]

So:

\[\phi_{lm}(r) = (l+1)r^l\alpha_{lm} = \frac{4\pi}{c} r^l \frac{l+1}{2l+1} \int_{0}^{\infty} (r')^{-l+1} J^{(2)}_{lm}(r')dr', \]

So, if we have \(\phi_{lm} \) given, we can easily find \(\vec{J} \) on the sphere:

\[\vec{J} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} J^{(2)}_{lm} \Phi_{lm}. \]
Current density functions based on VSH

\[
\phi_{lm}(r) = (l + 1) r^l \alpha_{lm} = \frac{4\pi}{c} r^l \frac{l + 1}{2l + 1} \int_0^\infty (r')^{-l+1} J_{lm}(r') dr',
\]
Current density functions based on VSH

\[\phi_{lm}(r) = (l + 1) r^l \alpha_{lm} = \frac{4\pi}{c} r^l \frac{l + 1}{2l + 1} \int_0^\infty (r')^{-l+1} J_{lm}(r')dr', \]

\[\Phi_{1,0} = -\left(\frac{3}{4\pi} \right)^{1/2} \sin \theta \hat{\phi}, \]

\[\Phi_{1,1} = -\frac{3}{8\pi} e^{i\phi} \left(\cos \theta \hat{\phi} - i \hat{\theta} \right), \]

\[\Phi_{2,0} = -3 \left(\frac{5}{4\pi} \right)^{1/2} \sin \theta \cos \theta \hat{\phi}, \]

\[\Phi_{2,1} = \left(\frac{15}{8\pi} \right)^{1/2} e^{i\phi} \left((1 - 2 \cos^2 \theta) \hat{\phi} + i \cos \theta \hat{\theta} \right), \]

\[\Phi_{2,2} = \left(\frac{15}{8\pi} \right)^{1/2} e^{2i\phi} \left(\cos \theta \hat{\phi} - i \hat{\theta} \right). \]
\(\Phi_{1,0} \)
\(\vec{\Phi}_{20} \)
Grzegorz Wyszyński (IF UJ)

Active magnetic shielding

May 24, 2011
Circular loop

\[\vec{J}(r, \theta, \phi) = I \delta(\cos \theta) \frac{\delta(r - R)}{R} \hat{\phi} \]
Results

Grzegorz Wyszyński (IF UJ)
Active magnetic shielding
May 24, 2011
Example 2 - Helmholtz coils

\[\vec{J}(r, \theta, \phi) = I \left(\delta(\theta - \beta) + \delta(\theta - \pi + \beta) \right) \frac{\delta(r - R)}{R} \hat{\phi} \]

\[\beta = \arctan(2) \]
Results

-1.0 -0.5 0.0 0.5 1.0
y
-1.0
-0.8
-0.6
-0.4
-0.2
-0.0

Bz @TD
VSH l=5
VSH l=3
VSH l=1

Exact

-1.0 -0.5 0.0 0.5 1.0
y

-0.05
-0.04
-0.03
-0.02
-0.01

Difference
VSH l=5
VSH l=3
VSH l=1

2 4 6 8 10 12 14 16 18 20
l
0.3
0.4
0.5
0.6
0.7

rmax

Grzegorz Wyszyński (IF UJ)
Active magnetic shielding
May 24, 2011 28 / 33
"Cellural" coils approach

Principle of working

- Large number of small coils
- Each coil with separate current source
- Genetic algorithms to calculate currents
"Cellural" coils approach

Principle of working
- Large number of small coils
- Each coil with separate current source
- Genetic algorithms to calculate currents

Features
- Easier to design mechanically
- More complicated calculation part
- Still needs investigation...
Magnetocardiography

- Measurement of magnetic field generated by currents flowing in human heart
- Usage of SQUIDs
- Comparing to ECG is non-contact, more accurate and possible map creating
- Very small signal, need to use shields
- Other application of magnetic shields for medicine: Magnetoencephalography and Magnetogastrography

Example of diagnosis based on MCG

Example of diagnosis based on MCG

Grzegorz Wyszyński (IF UJ)

Active magnetic shielding
Summary

What has been done?

- Found basis functions for magnetic field description
- Found current densities necessary for generating such field

What's next?

- Further investigation, concerning convergence to real data
- Check other solutions (small coils)
- Later, build test setup

Aim is construct final setup for next generation of nEDM experiment, which will have shielding factor of $10^3 - 10^4$ for noise of frequencies $0.01 - 100$ Hz.

Grzegorz Wyszyński (IF UJ)

Active magnetic shielding

May 24, 2011
Summary

What has been done?
- Found basis functions for magnetic field description
- Found current densities necessary for generating such field

What’s next?
- Further investigation, concerning convergence to real data
- Check other solutions (small coils)
- Later, build test setup
- Aim is construct final setup for next generation of nEDM experiment, which will have shielding factor of $10^3 - 10^4$ for noise of frequencies $0.01 - 100$ Hz